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Abstract 
 

Recently the idea of using dual transmitted waveform systems for airborne EM time-domain 
surveys has gained popularity with the opinion that such systems could provide the best of both worlds – 
strong dipole moment for deep penetration and early time gates for better definition of near surface 
features. Although at first glance the idea of dual waveform might seem to be attractive, more detailed 
analysis shows that the dual waveform has serious disadvantages, especially for mining applications 
where conductors are discrete and highly conductive in many cases. The single waveform system 
delivers better definition for the discrete conductors, the situation typical for mining applications. 

 
Introduction 

 
Up until recently, airborne time-domain EM platforms have typically used a single on-off pulse 

waveform, using a variety of pulse shapes (sinusoidal, box-car, triangular, etc.) depending on the system 
and application, including near surface layered geology problems. However, more recently the concept 
of dual waveform systems for airborne EM time-domain surveys has been proposed (Auken et al., 2009; 
Chen et al., 2013). The reason for this technical solution is to reduce the system response influence on 
the signal received in the earliest stages after transmitter current off with the expectation that such 
systems can provide the best of both worlds: a) high dipole moment from comparatively long pulse for 
deep penetration and b) early time gates from short pulse for better definition of near surface features. 
Indeed, although initially designed and proposed for hydrogeologic applications, where lateral changes 
are not significant, the dual waveform concept has since been extended into mineral exploration 
(Sorensen, et al., 2013). 

Although at the first glance the idea of dual waveform might seem optimal, more detailed 
analysis shows that the dual waveform concept has certain disadvantages, especially for mining 
applications where conductors are often discrete and highly conductive. In particular, with regards to 
gaps in electromagnetic and magnetic coverage that result from the dual waveform sequential sampling 
technique. As another example, dual waveform systems that transmit during the same duty cycle, rather 
than sequentially, can compromise the latest time gates that are critical for depth of investigation and 
conductor characterization. In comparison, more traditional/conventional single pulse systems sample 
the earth continuously and uniformly using the same pulse shape, as well as into latest possible times, 
thus delivering better definition of discrete conductors, the situation most typical for mineral 
exploration. 

 
Dual Waveform with Sequential Transmission 

 
The first case is for the dual waveform system whereby the high moment (HM) data, obtained 

using a longer pulse at high amperage, are collected separately, or sequentially, in a separate data 
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Conclusions 

The main issues arising from sequential dual waveform time-domain systems are: 
1) Significant gaps in both EM and magnetic data. 
2) Distortion of the signal from discrete conductors, especially conductors close to the 

surface, due to the gaps in the data. 
3) Low moment and high moment data are collected over different parts of the line. In cases 

when the geology is changing rapidly along the line (typical for mining) LM and HM 
data represent responses from different geologies and should not be used simultaneously 
for modeling 

The main issues arising from simultaneous dual waveform time-domain systems are: 
1) In the case of conductive rocks the smaller pulse is overprinted by the significant varying 

response from the earlier larger pulse, and as a result the accuracy of the early time 
measurements is affected. 

2) The second smaller pulse eliminates the latest time gates that are of particular importance 
for detecting and discriminating good conductors, in addition to limiting the depth of 
investigation. 

This study has demonstrated certain issues surrounding measured data from dual waveform 
systems, particularly in mining applications. Other issues include the inability to obtain B-field data and 
effects of applying heavy filters to reduce noise. Clearly the way forward to avoiding these issues is to 
improve the system parameters for single waveform systems, particularly with regard to eliminating the 
system response that is present in the earliest channels (<0.1 msec) after the transmitter current turn-off. 
An example of such an approach is waveform deconvolution by Annan (1986) and proposed by Macnae 
and Baron-Haye (2010) for single waveform helicopter time-domain EM systems. 
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